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A simple proof is given for a localization theorem of H. Stahl. © 1991 Academic

Press, Inc.

Let fJ denote a finite Borel measure on the real line ~ with compact
support S(fJ) := supp(fJ). By Q = Q(fJ) we denote the complement of the
support S(fJ), i.e., Q:= C\S(fJ), and by I(fJ) the smallest interval on ~

containing the support of fJ.
We shall always assume that the support of fJ consists of infinitely many

points. Then we can form the uniquely existing orthonormal polynomials

with respect to fJ

where (jn,m = 1 if n = m and (jn,m = 0 otherwise.
In what follows cap(S) denotes the (outer logarithmic) capacity of a

bounded set S £ C; i.e., cap(S) = infu cap( U), where the infimum extends
over all open sets U2 S (see Chapter 11, Section 2 of [1]), and we say that
a property holds qu.e. (quasi everywhere) on a set S £ C if it holds on S
with possible exceptions on a subset of capacity zero. By gg(z; 00) we
denote the Green function of Q with logarithmic pole at infinity.

For the formulation of our results we introduce the following
convergence notion. We say that a limit relation

lim inf Ifn(z)1 ~h(z)
n -> 00
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holds true locally uniformly in an open set D if for every ZED and Zn ~ z
as n~ 00 we have

lim inf Ifn(zn)1 ~ h(z).
n~ 00

Thus, the two notions "locally uniformly in D" and "uniformly on compact
subsets of D" are different; in general the latter is stronger than the former
one. However, if h is continuous, or merely upper semi-continuous (for a
lim sup relation: h lower semi-continuous), then these two convergent
notions coincide.

The following two results are the basis of the definition of the regularity
of a measure below.

LEMMA 1 (see Section 3.9 of [4]). For any J1 the following are true:

(i)

.. lin >- 1
hmmfYn(J1) ,.... (S(»
n~ 00 cap J1

(ii)

lim inf IPn(J1; z)l l /n ~ e8Q(z;00)

n~ 00

locally uniformly in C\I(J1).

(iii) For every infinite subsequence N r;;. N we have

(1)

(2)

for qu.e. Z E S(J1). (3)
n~ oo,nEN

The next assertion explains when we have equality in the above
estimates.

LEMMA 2 (see Theorem 1 in [4]). The following three assertions are
equivalent:

(i) The limit

1
lim Yn(J1)I/n = (S(»
n~ 00 cap J1

holds true.

(ii) The limit

lim IPn(J1; z) jl/n = egQ(Z; (0)

n~ 00

holds true locally uniformly in C\I(J1).

(4)

(5)
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(iii) The limit
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(6)

holds true qu.e on S(J1).

It easily follows from (5), (6), and the principle of descent [1,
Theorem 1.3] that

n~ 00

holds true locally uniformly on C. We shall use this remark in the proof
below.

DEFINITION. If one of the three assertions of Lemma 2 holds true, then
the orthonormal polynomials Pn(J1; z), n EN, associated with the measure J1
are said to have regular (nth root) asymptotic behavior, and we write
J1 E Reg. We shall refer to J1 E Reg simply as J1 is regular.

Orthogonal polynomials with regular behavior are the analogues of the
classical orthogonal polynomials for general measures, and this notion is
extremely important and useful in applications. Therefore, the following
theorem of Herbert Stahl [2], which asserts the surprising fact that the
regularity of a measure is basically a local property, is of fundamental
importance in the theory.

THEOREM A. Let K £; IR be a compact set such that the support of
J1K := J11 K is an infinite set and

cap(K n S(J1)) = cap(lnt(K) n S(J1)) (7)

holds, where Int denotes the interior in IR. Then the following statements are
equivalent.

(i) ,uKE Reg; i.e., the sequence {Pn(,uK;')} ~~o has regular (nth root)
asymptotic behavior.

(ii) We have

locally uniformly for z E C.

(iii) The relation

lim sup IPn(J1; z )11/n::::;; 1

holds quasi everywhere on S(J1K)'
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(iv) For any sequence {Pn } of nonzero polynomials of degree
deg(Pn ) ~ n we have

lim sup ( IPn(z)1 )l/n ~ egQlnl(=; co)

n~co IIPnII L 2(i<K)

locally uniformly for Z E C.

(v) For any sequence {Pn } as in (iv)

for quasi every z E S(flK)'

If S(flK) is a regular set with respect to the solution of the Dirichlet
problem in the domain Q(flK)' then in assertion (v) the asymptotic inequality
holds true not only quasi everywhere, but uniformly on S(flK), and in (iii) we
have an upper inequality ~ uniformly on S(flK)'

The main purpose of this paper is to give a simple proof for Stahl's
result. This is warranted by the importance of the theorem and by the
relative complexity of Stahl's proof. He used a very fine potential technique
for "zero surgery" which certainly will have applications elsewhere.
However, here we show that the above result can be proved rather simply.

Actually we shall prove a slight improvement of Theorem A, namely in
assertions (iv) and (v) we shall replace L 2(flK)-norms by L 2(fl)-norms.
With this we get more unified statements,and Stahl's version can be easily
derived from our variant. Thus, we shall prove

THEOREM 1. Let K be a compact set such that the support of flK:= fllK
is an infinite set and (7) holds. Then the following statements are equivalent.

(i) flKE Reg; i.e., the sequence {pAflK;' )}:~o has regular (nth root)
asymptotic behavior.

(ii) We have

locally uniformly for Z E C.

(iii) The relation

lim sup IPn(fl; z)1 1
/
n
~ 1

holds quasi everywhere on S(flK)'

(8)

(9)
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(11 )

(iv) For any sequence {Pn} of nonzero polynomials of degree
deg(Pn)~ n we have

lim sup ( IPn(z)1 )l/n ~egQ(~K)(z;oo) (10)
n~oo IIPn II L 2(1')

locally uniformly for z E C.

(v) For any sequence {Pn} as in (iv)

lim sup ( IPn(z)1 )l/n ~ 1
n~oo IIPn II L 2(1')

for quasi every z E S(J-l K).

If S(J-lK) is a regular with respect to the solution of the Dirichlet problem
in the domain Q(J-lK)' then the above relations hold uniformly in the range
described.

Proof of Theorem 1. (ii) => (iv) and (iii) => (v) are immediate if we
expand the polynomials Pn in their (finite) Fourier series in the orthogonal
polynomials {Pk(J-l;·)}. In a similar manner, (i) => (ii) follows from
Lemma 2 by Fourier expansion of Pn(J-l; .) into {Pk(J-lK; .)}r~o (cf. also the
remark made after Lemma 2). Since (iv) => (ii) => (iii) is trivial, it has only
remained to prove (v) => (i). This is basically Lemma 4.2 of [2], so with the
following proof we give a short proof for that lemma, as well.

Let us suppose on the contrary that (i) is false. Then, by (3) and (iii) in
Lemma 2 we have

(12)
n~ 00

on a subset of S(J-lK) of positive capacity. Since qu.e. point of S(J-lK) is a
regular boundary point with respect to the Dirichlet problem for the
domain QK:=Q(J-lK)=C\S(J-lK) (see [3, TheoremIII.33]), (12) holds true
at some regular point Xo. Let N 1 S; Nand 0 < 1] < 1/2 be such that the limit

(13)

(14)lim

exists and satisfies the stated inequality. Let vPdI'K;') be the normalized
counting measure on the zeros of Pn(J-lK;·); i.e. Vpn(I'K;') is the measure that
places mass lin to each zero of Pn(J-lK;·). Since these measures are
supported in the smallest interval I(J-l) containing the support of J-l, Helly's
selection theorem can be applied and we can select another subsequence
N z S; N 1 such that the limits

lim Vpn(I'K;') = v,
n __ oo.n E N2
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exist, where the first limit is taken in the weak* topology on measures with
support in 1(11)' Obviously, v is a probability measure on 1(11) and
CEIRU{OO}.

We can deduce from (13) and the principle of descent (see [1,
Theorem 1.3J) for the logarithmic potential

p(v, x) := flog _1_
1

dv(t)
Ix-t

of v that

(15)

Since here both sides are continuous in the fine topology (see [1,
Chap. IIIJ), we must have

(16 )

for some Xl ¢ IR.
Let now K 1 ,,;;K2 ,,;; '" ,,;;Int(K)(1S(Il),,;;S(IlK) be an increasing

sequence of compact sets with

lim cap(Km ) = cap(Int(K) (1 S(Il)) = cap(S(IlK)),
m-+OO

where the last equality is a consequence of (7) and

Since

and

it follows from Harnack's inequality that together with (16) we must also
have

(17)

for large m. Fix such an m. Equation (17) implies via the principle of
domination (see [1, Theorem 1.27J) (recall that gC\K

m
is the difference of

a constant and the logarithmic potential of the equilibrium measure of Km
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and this latter one has finite logarithmic energy for large m) that we must
have

-p(v, x) + c > g<C\Km(x, CXJ) + 21]

on a set E ~ K m of positive capacity. By the lower envelope theorem
([1, Theorem 3.8J) we can then conclude

limsup IPn(j.lK;x)llln>e2~
n.......,lo OO,nENZ

(18)

for qu.e. x E E; hence we can assume (18) for all x E E. Recall now that
E ~ K m~ Int(K) n S(J.l), and Int(K) is the union of countably many open
intervals Since cap(E) > 0, there is a subinterval J ~ Int(K) with
cap(E n J) > O. Hence, by changing E if necessary, we may assume besides
cap(E»O and (18) for every XEE that E~ [a, fJJ, where [a, fJJ is a
proper subinterval of the open interval J ~ K.

Now we distinguish two cases.

Case I. The constant c in (14) is finite. Then the polynomials
{Pn(J.lK;· )} nEN2cannot grow exponentially on compact subset of C, hence
there is a C such that

XE S(J.l), (19)

Choose a polynomial Q such that 0::( Q::( 1 on I(J.l),

for x E [a, fJJ (20)

and
0::( Q(x)::( 11C (21)

are satisfied, and consider the polynomials

(22)

where k denotes the degree of Q.
By (19) and (21) we have for nEN2

IIPn(l +dl i2(!')::( II Pn(J.lK; . )11 h!'K) + J.l(I(J.l)\]) = 0(1), (23)

and so it follows from (18) and (20) that for every XEE

(
IP (x)1 )lln(k+l)lim sup n(l + k)

n-+ OO,nEN2 IIPn(l +k)IIL2(!,)

(
e2n~e -n~) lln(l + k).

~ lim sup = e~/(l +k) > 1
n-+oo 0(1) ,
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which shows that assertion (V) is not true because cap(E) > O. This proves
the implication (v) => (i) in the case c < 00.

Case II. c = 00. In this case the argument is very similar to the one
above, only we work with the monic orthogonal polynomials

1
qn(f.1K;X)=-(-) Pn(f.1K;X).

'Yn f.1K

In fact, by (14) and the lower envelope theorem we have

lim sup IQn(f.1K; z)ll/n = exp( - p(v; z)) > 0
11--+ W,l1EN2

for gu.e. Z E C; hence we can choose d> 0 and C so that

for some E* £ (iX, fJ), cap(E*) > 0 and

IQAf.1K; xW/n ~ C, x E S(f.1),

XEE* (18')

(19')

are satisfied. Choose now Q according to (20) and

0~Q~d/2C

For the polynomials (22) with Pn(f.1K; x) replaced by Qn(f.1K; x) we have
now like in (23)

(recall that c= 00) hence (18') yields for xEE*

(
IF ( )1 )1/n(k+ll

lim sup n(I+k) X ;::: (2e-~)1/(1+k» 1;
n->CJO IIPn(l+k)IIL2(/l)

i.e., (v) is false again.
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